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Abstract
We introduce a spin–charge conductance matrix as a unifying concept
underlying charge and spin transport within the framework of the Landauer–
Büttiker conductance formula. It turns out that the spin–charge conductance
matrix provides a natural and gauge covariant description for electron transport
through nanoscale electronic devices. We demonstrate that the charge and
spin conductances are gauge invariant observables which characterize transport
phenomena arising from spin-dependent scattering. Tunnelling through a single
magnetic atom is discussed to illustrate our theory.

1. Introduction

Spintronics is a promising and intriguing subject which aims to bring novel functionalities to
conventional electronic devices via the manipulation of spin degrees of freedom of electrons
(for a recent review, see, e.g., [1]). This is achieved by implementing various means such as
imposing external electrical and magnetic fields to control and manipulate charge and spin
dynamics. Although significant advances have been made over the years in diverse areas
including spin transport, spin dynamics, and spin relaxation, the full potential of spintronic
applications in nanoscale electronic devices remains to be developed.

Electrons as carriers carry both charge and spin degrees of freedom. This makes it
impossible to consider separately charge and spin transport in solid-state devices, since any
manipulation of one degree of freedom influences the other, although the detection of charge
and spin currents does require different kinds of experimental set-ups. A fundamental issue
is how to characterize spin conduction associated with a given charge current, which is well
understood in conventional electronics. In this paper, we will address this issue for a specific
problem, i.e., electron transport in solids, which has been systematically studied by Landauer
and Büttiker [2, 3]. In their approach, charge transport in mesoscopic systems is described in
terms of the probability for an electron to be transmitted through a given channel. The theory
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has been successfully confirmed in remarkable experiments [4, 5] which exhibit quantized
conductance in a quantum point contact. On the other hand, if one tries to incorporate
spin degrees of freedom into the Landauer–Büttiker formalism, it is necessary to introduce
a spin conductance which describes effects arising from spin-dependent scattering processes
in nanoscale electronic devices, because the charge conductance is not enough to give a proper
and complete description of the spin-dependent scattering. This motivates us to define a spin–
charge conductance matrix which presents a unifying concept underlying spin and charge
transport based on the scattering matrix formalism for nanoscale electronic devices. It turns
out that the charge and spin conductances are two physical observables which one may construct
from the spin–charge conductance matrix as gauge invariants. This results from the unitary
freedom in choosing the incoming and outgoing wavefunctions for a spin-dependent scatterer.
We stress that the charge and spin conductance matrix constitutes a natural spintronic analogue
of the scalar conductance encountered in the Landauer–Büttiker formalism, which plays a
fundamental role in mesoscopic physics. We also mention a relevant work by Pareek [6]
in which an extension of the Landauer–Büttiker formula to spin-dependent transport was
discussed. However, in contrast to our approach, his theory is only applicable to systems with
multiple leads.

To illustrate the theory, we consider tunnelling through a single magnetic atom, in which
spin flip processes play a dominant role. The exact solvability of the model Hamiltonian makes
it a good example for illustrating our general formalism. The experimental set-up required to
measure the spin currents associated with tunnelling from a scanning tunnelling microscope
tip through a magnetic atom is indicated.

2. A mesoscopic system and the Landauer–Büttiker charge conductance

Consider a quantum mesoscopic device consisting of a scatterer connected to two ideal leads.
For each ideal lead, there are 2M channels, where the factor 2 comes from the spin degeneracies
and M is the number of different transverse modes which electrons are allowed to populate.
Without loss of generality, we restrict ourselves to the case where only one mode is populated,
i.e., M = 1. This amounts to assuming that there is no scattering from one transverse mode
to another. This may be achieved by ensuring that the transverse confining potential does not
vary along the longitudinal direction. Then electron transport through the scatterer is described
by a scattering matrix S [7] connecting the outgoing wave amplitudes to the incoming wave
amplitudes at the different leads. S is unitary, ensuring current conservation. Taking into
account the internal spin space describing the spin degrees of freedom, we see that S is a 4 ×4
matrix, defined in terms of four 2 × 2 block matrices r, r′, t, and t′, which are the reflection
and transmission matrices from the left and right leads, respectively. The indices σ (=±) and
σ ′ (=±) will be used to denote partial reflection and transmission entries. For example, rσσ ′

denotes the reflection coefficient with spin σ ′ for electrons incident from the left lead with
spin σ . According to Landauer [2], the (charge) conductance GC is related to the transmission
probabilities in the linear response regime. In our case, the charge conductance [7] is given by

GC = e2

h
Tr t t†, (1)

where the trace of the product of the transmission matrices is taken over the internal spin
space. Intuitively it is quite plausible that the charge conductance is proportional to the ease
with which electrons can transmit through the scatterer.
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3. A spin–charge conductance matrix (charge and spin conductances)

S is not unique because of the unitary freedom in choosing the incoming and outgoing
wavefunctions associated with a given lead. The unitary freedom allows different choices
of the scattering matrix: S′ = ΩS with Ω a diagonal block matrix, each block of which is a
2×2 unitary matrix ω. This amounts to the fact that there is a (global) gauge group U(2) (�ω)
originating from the unitary freedom. Physically, left multiplication of the scattering matrix S

by Ω just redistributes the scattering particles among different incoming channels associated
with a certain lead. Such a redistribution should not affect correlations at the scatterer and
so one may expect the physics to remain the same. This kind of gauge transformation has
appeared in the discussion of quantum adiabatic pumping [8, 9]. The gauge transformation
for the scattering matrix induces a transformation for the transmission matrix t: t → ωt.

Physical information on spin-dependent scattering through the scatterer encoded in the
amplitudes of the transmission matrix is relevant to charge and spin transport through nanoscale
electronic devices. However, the charge conductance defined in equation (1) does not exhaust
all the encoded information. To help understand transport phenomena arising from spin-
dependent scattering, let us define a spin–charge conductance matrix as follows:

G = e2

h
t t†. (2)

One sees that such a conductance matrix transforms covariantly: G′ = ωGω−1. Therefore,
the spin–charge conductance matrix G is itself gauge dependent. However, as we will see
below, the gauge invariants that one can construct from G determine the physical observables
such as the charge conductance.

To show why we need to introduce such a conductance matrix, we consider a system
in which the spin is conserved, i.e., the spin flip processes are absent. In such a case, the
transmission matrix t is diagonal in the internal spin space, i.e., only t++ and t−− are non-zero
in a properly chosen basis (gauge). Following Landauer and Büttiker, one may write down
the conductances G++ and G−− as Gσσ = (e2/h)|tσσ |2. This corresponds to the case where
the conductance matrix introduced above is diagonal. However, this is only true in a specific
gauge; generically, a covariant spin–charge conductance matrix as defined above is needed.
Physically, the conductance matrix results from the fact that charge and spin transport should
be proportional to the ease with which electrons can transmit through the scatterer, combining
with the spin dependence of the scatterer which can flip spins of electrons when they traverse
it.

Now we rewrite the conductance matrix G as G = ∑
α∈{0,x,y,z} Gασα/2, where Gα =

(e2/h)Tr t†σαt. Here, σ0 is the identity matrix and σx ,σy , and σz are the Pauli matrices.
One may establish that G0 is just the charge conductance, GC, appearing in the Landauer–
Büttiker formula in equation (1). Under a gauge transformation, as one may expect, G0 is
invariant, whereas Gx , G y , and Gz are themselves gauge dependent. However, Gx , G y , and
Gz transform like a vector under the induced rotation group in the internal spin space. Then
we have another gauge invariant quantity, G2

x + G2
y + G2

z . Indeed, the spin–charge conductance
matrix may be rewritten in terms of these gauge invariants, i.e., charge and spin conductances:

G = 1
2

(
GCσ0 + GSσs

)
, (3)

where the spin conductance vector is defined as GS = GSσ
s . The amplitude of the spin

conductance vector takes the form

GS =
√

G2
x + G2

y + G2
z (4)
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and σs = (Gxσ
x + G yσ

y + Gzσ
z)/GS is the unit directional vector for the spin conductance.

It should be noted that the charge conductance, G0, and the amplitude of the spin conductance,
GS, are gauge invariant. Since the σs is not gauge invariant, G is itself gauge dependent. Then
Gx , G y , and Gz are the projection components of a vector in internal spin space for the spin
conductance. As in the case of a quantum spin, they cannot be observed simultaneously. In
other words, the spin conductance defined contains a unique spin conduction for spin scattering
but the components of the spin conductance depend on how the basis has been chosen.

4. Charge and spin currents

The essential issue now is how to observe the above-defined spin and charge conductances.
Let us consider gauge invariant quantities which can be constructed from the spin–charge
conductance matrix. One sees that the eigenvalues of G are gauge invariant. They are denoted
by G+ and G−. From equation (3), we have G± = (GC ± GS)/2. This is obtained by
performing a gauge transformation defined by ωσsω−1 = σz . Now we address the connection
between the defined conductances and physical observables. Actually, in our case, there are
two independent simultaneous observables which are charge currents flowing into two spin
channels, Iσ . As observables, the Iσ must be gauge invariant. Therefore they must be some
functions of the gauge invariants GC and GS, i.e., Iσ = fσ (GC, GS) with the fσ being model-
independent functions to be determined,since our argument only involves the gauge invariance.
From scattering processes without spin flips, we have

Iσ = 1
2 (GC + GS)�V , Iσ̄ = 1

2 (GC − GS)�V . (5)

Here �V is the voltage bias across the device. From the two charge currents, we may define
the charge current, IC = Iσ + Iσ̄ , and the spin current, IS = Iσ − Iσ̄ . Then the charge and spin
conductances are directly connected to the charge and spin currents by

IC(S) = GC(S)�V . (6)

The above consideration amounts to the statement that in order to incorporate spin degrees
of freedom into the conventional Landauer–Büttiker theory, it is necessary to introduce a 2 ×2
current matrix I:

I ≡
(

Iσσ Iσ σ̄

Iσ̄ σ Iσ̄ σ̄

)

= G�V . (7)

The equation is covariant under a gauge transformation. The appearance of a current matrix
instead of a current vector characterizes the difference between the conventional Landauer–
Büttiker theory and ours. The two charge currents Iσ turn out to be the eigenvalues of
the current matrix so defined. Therefore, the defined spin conductance, GS, is indeed the
observable physical quantity characterizing spin-dependent scattering within the Landauer–
Büttiker framework for electron transport in nanoscale electronic devices.

5. The extension to a system with multiple leads

It is straightforward to extend the above discussion to a system with N leads. In such a case,
S becomes a 2N × 2N matrix, which may be defined in terms of N22 × 2 block matrices, i.e.,
the matrices for reflection from the αth lead rαα and the matrices for transmission from the
αth lead to the βth lead tαβ . Then the 2 × 2 current matrix (for flow into the αth lead) takes
the form

Iα =
∑

β

Gαβ�Vαβ. (8)
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Here �Vαβ is the voltage bias between the αth and βth leads, and Gαβ is a 2×2 charge and spin
conductance matrix defined by Gαβ = (e2/h) tαβ t†

αβ . The currents Iασ are two eigenvalues of
the current matrix above,which are gauge invariant under a gauge transformation tαβ → ωαtαβ

induced from the unitary freedom in choosing the incoming and outgoing bases, where ωα

denotes the αth diagonal block in Ω.

6. Tunnelling through a single magnetic atom

Consider a mesoscopic system consisting of two normal leads coupled to a single site, the
magnetic spin of which has an exchange interaction J with a magnetic atom. The model
Hamiltonian takes the form [9, 10]

H =
∑

kσ∈L,R

εkc†
kσ ckσ + J

∑

σ,σ ′
d†

σ�σσ ′dσ ′ +
∑

kσ∈L,R

(Vkc†
kσ dσ + H.c.). (9)

Here, c†
kσ and ckσ denote, respectively, the creation and destruction operators for an electron

with momentum k and spin σ in either the left (L) or the right (R) lead, whereas d†
σ and dσ

are the creation and destruction operators for the single electron with spin σ at the magnetic
spin site. εk are the single-particle energies of conduction electrons in the two leads. As usual,
it is convenient to linearize the εk around the Fermi points, i.e., εk = vF(|k| − kF), where vF

is the Fermi velocity and kF is the Fermi momentum. For brevity, it is assumed that vF = 1
and kF = 0. The latter implies that the momentum is measured from the Fermi surface for
electrons in leads. The electrons on the spin site are connected to those in the two leads with
the tunnelling matrix elements Vk . For simplicity, we assume symmetric tunnelling barriers
between the local spin, i.e., VL = VR = V . Then the entries of the coupling matrix � take the
form �++ = −�−− = cos θ and �+− = �∗−+ = sin θ exp(−iφ), where the angle between the
magnetic spin of the atom and magnetic field is denoted by θ and the azimuthal angle is φ.

The model Hamiltonian is exactly solvable. The elements of the transmission matrix, t,
take the following form:

t++ = 1

2

(

−1 + eiδ1 cos2 θ

2
+ eiδ2 sin2 θ

2

)

, (10)

t+− = 1

2
e−iφ (

eiδ1 − eiδ2
)

sin
θ

2
cos

θ

2
, (11)

t−+ = 1

2
e+iφ

(
eiδ1 − eiδ2

)
sin

θ

2
cos

θ

2
, (12)

t−− = 1

2

(

−1 + eiδ1 sin2 θ

2
+ eiδ2 cos2 θ

2

)

, (13)

where the δi (i = 1, 2) are the phase shifts defined by δ1 = −2 tan−1(�/(k − J )) and
δ2 = −2 tan−1(�/(k + J )) with the tunnelling rate � = V 2. As a result, the charge and spin
conductances take the forms

GC = e2

h

(

sin2 δ1

2
+ sin2 δ2

2

)

, (14)

GS = e2

h

(

sin2 δ1

2
− sin2 δ2

2

)

, (15)

respectively, where the unit directional vector for the spin conductance is σs = cos φ sin θσx +
sin φ sin θσy + cos θσz . As one might expect, the amplitude of the spin conductance does not
depend on the details of the specified coordinates for the spin of the magnetic atom, contrasting
with the fact that Gx , G y, and Gz are rather dependent on the specified coordinates. When
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Figure 1. (a) Charge and (b) spin conductances through a single magnetic spin for various spin
exchange interactions, J . The strength of the coupling between the magnetic atom and the leads is
denoted by �.

δ1 = δ2(J = 0), the amplitude of the spin conductance becomes GS = 0, as it should. At
the Fermi energy, a resonant peak occurs in the charge conductance. Figure 1 shows the spin
and charge conductances as a function of k/� for various spin exchange interactions. As the
exchange interaction increases from zero, the peak of the charge conductance for J = 0 splits
into two peaks around the resonant scattering, k = ±J . As we defined the spin current as
the difference between two charge currents associated with opposite spins, the sign change of
the spin conductance implies that the dominance of one given charge current is taken over by
the other. In addition, the spin current through the magnetic atom reaches its maximum value
around the resonant charge transport. It is shown that the exchange interaction inducing a spin
flip scattering determines the spin conduction through the scatterer.

The spin polarization, P , can be written in terms of the spin and charge conductances:

P = Iσ − Iσ̄
Iσ + Iσ̄

= GS

GC
. (16)

In our case, the spin polarization through the magnetic atom is given by P = (sin δ1/2 −
sin δ2/2)/(sin δ1/2 + sin δ2/2). The maximum polarization is shown to be at resonant charge
transport. As shown in figure 1(b), it reaches a perfect spin polarization as the spin exchange
interaction increases.
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Detection of spin currents. To do this, one could replace one of the normal metal leads
by a ferromagnetic one. Then the charge currents in both the normal and ferromagnetic leads
should be measured, which tells us the spin current IS via the relations

(
I F
C

I F
S

)

= 1
2

(
1 cos ζ

cos ζ 1

) (
IC

IS

)

, (17)

where ζ is an angle between the z-axis and the magnetization in the ferromagnetic lead.
We believe recent advances in electron spin resonance and scanning tunnelling microscope
experiments [11–13] make it possible to observe spin currents discussed here.

7. Conclusion

The scalar conductance which appears in the Landauer–Büttiker formalism has been
generalized to incorporate the spin degrees of freedom, thus revealing a unifying concept
underlying charge and spin transport in nanoscale electronic devices. The connection between
the charge and spin currents and the eigenvalues of the conductance matrix was established
and the experimental set-up for measuring spin currents was discussed. To demonstrate the
nontriviality of the effect, we considered tunnelling via a single magnetic atom in which the
presence of spin flip processes makes it possible to generate spin currents whose full description
requires a proper understanding of the non-Abelian character of the spin degrees of freedom.
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